PCF Metrics®

Version 1.2

User's Guide

© Copyright Pivotal Software Inc, 2013-2018
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>2</td>
</tr>
<tr>
<td>PCF Metrics</td>
<td>3</td>
</tr>
<tr>
<td>Installing PCF Metrics</td>
<td>4</td>
</tr>
<tr>
<td>Sizing PCF Metrics For Your System</td>
<td>7</td>
</tr>
<tr>
<td>Using PCF Metrics</td>
<td>11</td>
</tr>
<tr>
<td>Troubleshooting PCF Metrics</td>
<td>15</td>
</tr>
<tr>
<td>PCF Metrics Product Architecture</td>
<td>27</td>
</tr>
<tr>
<td>PCF Metrics Release Notes and Known Issues</td>
<td>32</td>
</tr>
</tbody>
</table>
PCF Metrics

Pivotal Cloud Foundry (PCF) Metrics stores logs, metrics data, and event data from applications running on PCF for the past two weeks. It graphically presents this data to help operators and developers better understand the health and performance of their apps. PCF Metrics includes the following data views:

- **Container metrics**: CPU, memory, and disk usage percentages
- **Network metrics**: requests per second, HTTP errors per second, and request latency
- **App events**: create, update, start, stop, and crash
- **Logs**: searchable application logs

For example, if you see a crash in the events view, you can zoom in on that time and view the corresponding container and network metrics. To help you troubleshoot, you can also see log output for that same time period.

Product Snapshot

Current PCF Metrics Details
- **Version**: v1.2
- **Release Date**: November 29, 2016
- **Compatible Ops Manager Version(s) for Install**: v1.8.0 through v1.9.x
- **Compatible Ops Manager Version(s) for Upgrade**: v1.7.8 through v1.9.x
- **Compatible Elastic Runtime Version(s)**: v1.8.9 through v1.9.x
- **AWS support?** Yes
- **Azure support?** Yes
- **GCP support?** Yes
- **OpenStack support?** Yes
- **vSphere support?** Yes

Note: The PCF Metrics tile operates in lockstep with Pivotal Elastic Runtime. If you are upgrading from PCF v1.7 to PCF v1.8 and you are using PCF Metrics v1.0.x, you must update to a PCF Metrics v1.2 tile before proceeding with the upgrade.

PCF Metrics User Guide

See the following topics for details about PCF Metrics:

- **Installing PCF Metrics**
- **Sizing PCF Metrics For Your System**
- **Using PCF Metrics**
- **Troubleshooting PCF Metrics**
- **PCF Metrics Product Architecture**
- **Release Notes and Known Issues**
Installing PCF Metrics

This document describes how to install and configure Pivotal Cloud Foundry (PCF) Metrics.

For information about the components deployed as part of this install procedure, see the PCF Metrics Product Architecture topic.

Prerequisites

- Ensure that you have installed the Elastic Runtime Tile.
- Ensure that you have installed v1.6 or later of the Redis tile.
- If you are running PCF on AWS, then ensure that, in Elastic Runtime, you have changed the Loggregator Port to 4443 from its value of 443.
- If you are running PCF on Google Cloud Platform (GCP), then do the following to configure the DNS entries to accommodate web sockets:

 1. Log in to the GCP console.
 2. In the menu, navigate to the Networking tab and click Load Balancing.
 3. Find the load balancer that corresponds to ENVIRONMENT-cf-ws.
 4. Record the IP address.
 5. Click Cloud DNS, then click ENVIRONMENT-zone.
 6. Click Add Record Set.
 7. Enter a DNS name for mysql-logqueue. The DNS name should be mysql-logqueue.SYSTEM_DOMAIN. Refer to your ERT Tile’s configuration of the System Domain under the Domains configuration section.
 8. In the IPv4 address field, enter the IP address of the load balancer that you recorded in Step 4.
 9. Leave the other fields as default.
 10. Repeat Steps 6-9 twice to create DNS records for elasticsearch-logqueue (elasticsearch-logqueue.SYSTEM_DOMAIN) and metrics (metrics.SYSTEM_DOMAIN).

Step 1: Add the PCF Metrics Tile to Ops Manager

Note: PCF Metrics should be installed on the same network as the Elastic Runtime Tile.

1. Download the PCF Metrics file from Pivotal Network.
2. Upload the PCF Metrics file to your Ops Manager installation.
3. Click Add next to the uploaded product description in the Available Products view to add PCF Metrics to your Installation Dashboard.

Step 2: Configure the PCF Metrics Tile

Note: The following procedures offer a standard configuration. To customize PCF Metrics for high capacity, see the Sizing PCF Metrics For Your System topic.

From the Installation Dashboard, click the PCF Metrics tile.

Assign Availability Zones (AZs) and Networks.

1. Click Assign AZs and Networks.
2. Select an Availability Zone under Place singleton jobs.
 Ops Manager runs Metrics jobs with a single instance in this Availability Zone.
3. Select one or more Availability Zones under Balance other jobs.
 Ops Manager balances instances of Metrics jobs with more than one instance across the Availability Zones that you specify.
4. Use the drop-down menu to select a network.
5. Click **Save**.

Data Services Ports

For reference, the following table shows the port associated with each data service.

<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticsearch</td>
<td>9200</td>
</tr>
<tr>
<td>MySQL</td>
<td>3306</td>
</tr>
</tbody>
</table>

MySQL Alerts

1. Click **MySQL Alerts**.

2. Set the **Email** value. Alerts for issues storing metrics into the MySQL cluster will be sent to this email address.

Data Store

1. Click **Data Store**.

2. Review the **Elastic Search Heap Size** value. Elastic Search memory allocation for Heap use. Set to 50% of the memory allocated to the smallest of the Elasticsearch instances in Resource Config or 31GB, whichever is smaller. Use a unit of M for megabytes or G for gigabytes.

3. Review the **MySQL InnoDB Buffer Size** value. Number of bytes for MySQL to use with memory allocation of InnoDB buffer. Set to 80% of the memory allocated to the MySQL instances in Resource Config. This does not take a unit, please provide the value in bytes.

4. Review the **MySQL Logqueue Count** value. You can increase this instance count at any time to accommodate higher levels of inbound metrics traffic.

5. Review the **Elasticsearch Logqueue Count** value. You can increase this instance count at any time to accommodate higher levels of inbound log traffic.

6. Review the **Ingestor Count** value. You can increase this instance count at any time to accommodate higher levels of Loggregator Firehose traffic.

7. Click **Save**.

Errands

1. Click **Errands**.

 ![Note: The PCF Metrics tile selects all Post-Deploy Errands by default. Pivotal recommends that you do not deselect any errands as doing so can cause issues with the deployment of the tile. However, you can deselect the Remove Legacy PCF Metrics CF Resources errand after deploying v1.2 of the tile.]

2. Review the **Post-Deploy Errands** and **Pre-Delete Errands**:
 - If this is the first deployment of the tile, all **Post-Deploy Errands** must be selected.
 - If you deselect the **Remove PCF Metrics 1.2 CF Resources** checkbox, artifacts may remain after the PCF Metrics tile uninstalls.
 - The following list describes what the **Smoke tests** errand does. See the **Smoke Test Errors** section of the **Troubleshooting PCF Metrics** topic for information on resolving errors discovered by this errand.
 - Confirms that MySQL ingests metrics
 - Confirms that Elasticsearch ingests logs
 - Confirms that the APIs return metrics and logs

Resource Config
1. Click Resource Config.

2. Review the resource configurations. By default, the settings match the instance types that are best suited for each job. For reference, the following table shows the default resource and IP requirements for installing the PCF Metrics tile:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Instances</th>
<th>Persistent</th>
<th>CPU</th>
<th>RAM</th>
<th>Ephemeral</th>
<th>Static IP</th>
<th>Dynamic IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticsearch Master</td>
<td>3</td>
<td>10 GB</td>
<td>4</td>
<td>16 GB</td>
<td>32 GB</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Elasticsearch Coordinator</td>
<td>2</td>
<td>1 GB</td>
<td>2</td>
<td>16 GB</td>
<td>32 GB</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Elasticsearch Data</td>
<td>4</td>
<td>100 GB</td>
<td>2</td>
<td>16 GB</td>
<td>32 GB</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>MySQL Server</td>
<td>2</td>
<td>100 GB</td>
<td>2</td>
<td>16 GB</td>
<td>32 GB</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MySQL Proxy</td>
<td>2</td>
<td>n/a</td>
<td>2</td>
<td>16 GB</td>
<td>32 GB</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Metron</td>
<td>1 (not configurable)</td>
<td>n/a</td>
<td>2</td>
<td>16 GB</td>
<td>32 GB</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

If you expect a high level of use, you may need to increase the disk resources available to your instances.

💡 Note: There have been issues with the Ops Manager Bosh Director correctly partitioning persistent disks larger than 2 TB.

3. Click Save.

Stemcell

1. Navigate to Pivotal Network and click Stemcells.

2. Download the appropriate stemcell version for your IaaS.

💡 Note: On AWS make sure to use a HVM stemcell if you are using the default instance sizes.

3. Click Import Stemcell and select the stemcell file you downloaded.

Step 3: Deploy PCF Metrics

Click Apply Changes to install the service. If the smoke tests fail, see the Troubleshoot Smoke Test Errors section of the Troubleshooting PCF Metrics topic.

Review the Using PCF Metrics topic for more information on how to log in, use, and interpret data from PCF Metrics.
Sizing PCF Metrics For Your System

This topic describes how to configure Pivotal Cloud Foundry (PCF) Metrics for high availability. Operators can use these procedures to optimize PCF Metrics for high capacity.

For more information about PCF Metrics components, see the PCF Metrics Product Architecture topic.

Configuring the Metrics Datastore

PCF Metrics stores metrics in a MySQL cluster.

To customize PCF Metrics for high capacity, you can add memory and persistent disk to the MySQL server nodes.

Considerations for Scaling

Because apps emit logs at different volumes and frequencies, you should not scale the MySQL server nodes in accordance to the number of app instances in your deployment. Because of the ease in scaling these components, we recommend starting with a minimal configuration then evaluating performance over a period of time and scaling. As long as persistent disk is being scaled up, there should not be any fear of losing data.

To calculate approximate starting memory and disk allocation for each MySQL server node, use the following formulas:

- **Memory**: As a general rule, each MySQL server node should have a minimum of 35 GB of memory. Increase from here if read performance starts to decrease.
- **Persistent Disk**: As a general rule, 10 million metrics stored in MySQL consumes approximately 6.5 GB of persistent disk on the VM.

Use these results as guidelines. Consider configuring your MySQL server nodes with additional memory and disk if your deployment adds additional app instances.

Procedures for Scaling

After determining the amount of memory and persistent disk required for each MySQL server node, perform the following steps:

1. Navigate to the Ops Manager Installation Dashboard and click the **Metrics** tile.
2. From the **Settings** tab of the **Metrics** tile, click **Resource Config**.
3. Modify the memory limit or persistent disk allocation as needed for your environment.

⚠️ **warning**: There have been issues with Ops Manager BOSH Director using persistent disks larger than 2TB.

4. If you modify the memory allocation for the MySQL server nodes, you must also update the MySQL InnoDB Buffer Size setting. Pivotal recommends that you set the buffer size to 80% of the memory allocated to that VM. To change the MySQL InnoDB Buffer Size:
 a. Navigate to the Ops Manager Installation Dashboard and click the **Metrics** tile.
 b. From the **Settings** tab of the **Metrics** tile, click **Data Store**.
 c. Update the MySQL InnoDB Buffer Size input field.

Configuring the Log Datastore

PCF Metrics uses Elasticsearch to store logs. Each Elasticsearch node contains multiple shards of log data, divided by time slice. To customize PCF Metrics for high capacity, you can scale the number of Elasticsearch data nodes.

Considerations for Scaling

To determine the number of Elasticsearch data nodes required for PCF Metrics, consider how many logs the apps in your deployment emit and the average size of each log.
If your average log size is 1 kilobyte, and each node has 1 terabyte of available disk space, then each node has a maximum storage capacity of 1 billion log messages. If your apps emit 3 billion logs over a 24-hour period, you need at least 3 nodes to hold the data and 3 additional nodes for high-availability replication.

This example assumes that your apps emit logs at a continuous rate over 24 hours. However, apps typically do not emit logs continuously. If your apps emit 2 billion of the 3 billion logs between 8 AM and 4 PM, you must determine the minimum node-to-shard ratio to accommodate that rate over the 8-hour period. Because your apps emit 1 billion logs over a 4 hour span, you need at least 6 nodes (24 hours/6 nodes = 4 hours worth of shards per node) to hold the data and an additional 6 nodes for high-availability replication.

You can also use the throughput of logs per minute to help determine how many Elasticsearch data nodes to provision. As a general rule, provision one data node for every 5000 logs received in one minute.

Procedures for Scaling

⚠️ warning: If you modify the number of Elasticsearch instances, the Elasticsearch cluster temporarily enters an unhealthy period during which it does not ingest any new logs data, due to shard allocation.

After determining the number of Elasticsearch nodes needed for your deployment, perform the following steps to scale your nodes:

1. Navigate to the Ops Manager Installation Dashboard and click the Metrics tile.
2. From the Settings tab of the Metrics tile, click Resource Config.
3. Locate the ElasticsearchData job and select the dropdown menu under Instances to change the number of instances.
4. Click Save.

Configuring the Ingestor

PCF Metrics deploys the Ingestor as an app within PCF. The Ingestor consumes logs and metrics from the Loggregator Firehose, sending metrics and logs to their respective Logqueue apps. To customize PCF Metrics for high capacity, you can scale the number of Ingestor app instances and increase the amount of memory per instance.

Considerations for Scaling

Because apps emit logs at different volumes and frequencies, you should not scale the Ingestor by matching the number of Ingestor instances to the number of app instances in your deployment.

Because Ingestor performance is affected by Loggregator performance, it can be difficult to determine in advance the proper configuration. Because of the ease in scaling these components, we recommend starting with a minimal configuration then evaluating performance over a period of time and scaling.

The Ingestor app can handle relatively large loads. For high availability, you must have at least two instances of the Ingestor app running. If your deployment runs fewer than 2000 app instances, two instances of the Ingestor app are sufficient.

Procedures for Scaling

⚠️ warning: If you decrease the number of Ingestor instances, you may lose data currently being processed on the instances you eliminate.

After determining the number of Ingestor app instances needed for your deployment, perform the following steps to scale the Ingestor:

1. Target your Cloud Controller with the Cloud Foundry Command Line Interface (cf CLI). If you have not installed the cf CLI, see theInstalling the cf CLI topic.
2. Log in with your UAA administrator credentials. To retrieve these credentials, navigate to the Pivotal Elastic Runtime tile in the Ops Manager installation Dashboard and click Credentials. Under UAA, click Link to Credential next to Admin Credentials and record the password.

3. When prompted, target the metrics space.

4. Scale your Ingestor app to the desired number of instances:

5. Evaluate the CPU and memory load on your Ingestor instances:

If your average memory usage exceeds 50% or your CPU consistently averages over 85%, add more instances with:

In general, you should scale the Ingestor app by adding additional instances. However, you can also scale the Ingestor app by increasing the amount of memory per instance:

For more information about scaling app instances, see the Scaling an Application Using cf scale topic.
Configuring the Logqueues

PCF Metrics deploys a MySQL Logqueue and an Elasticsearch Logqueue as apps within PCF. The MySQL logqueue consumes metrics from the Ingestor and forwards them to MySQL. The Elasticsearch logqueue consumes logs from the Ingestor and forwards them to Elasticsearch. To customize PCF Metrics for high capacity, you can scale the number of Logqueue app instances and increase the amount of memory per instance.

Considerations for Scaling

The number of MySQL and Elasticsearch logqueues needed is dependent on the frequency of logs and metrics being forwarded by the Ingestor. As a general rule, for every 45,000 logs per minute, add 1 Elasticsearch logqueue. For every 17,000 metrics per minute, add 1 MySQL Logqueue. This is a general estimate and you may need fewer instances depending on your deployment. To optimize resource allocation, provision fewer instances initially and increase instances until you achieve desired performance.

Procedures for Scaling

To modify your Elasticsearch Logqueue app instances, you must first target your Cloud Controller, log in with your UAA administrator credentials, and target the metrics space by following steps 1-3 in the previous section.

To scale your Logqueue app instances, perform the following command:

```
5 CF scale elasticsearch-logqueue -i INSTANCE-NUMBER
```

To scale the memory limit per Logqueue app instance, perform the following command:

```
5 CF scale elasticsearch-logqueue -m NEW-MEMORY-LIMIT
```

To modify your MySQL Logqueue app instances, you must first target your Cloud Controller, log in with your UAA administrator credentials, and target the metrics space by following steps 1-3 in the previous section.

To scale your Logqueue app instances, perform the following command:

```
5 CF scale mysql-logqueue -i INSTANCE-NUMBER
```

To scale the memory limit per Logqueue app instance, perform the following command:

```
5 CF scale mysql-logqueue -m NEW-MEMORY-LIMIT
```

⚠️ warning: If you decrease the number of Logqueue instances, you may lose data currently being processed on the instances you eliminate.
Using PCF Metrics

This topic describes how to log in to, use, and interpret data from Pivotal Cloud Foundry (PCF) Metrics.

View an App in PCF Metrics

In a browser, navigate to `https://YOUR-SYSTEM-DOMAIN` and log in with your User Account and Authentication (UAA) credentials. Choose an app for which you want to view metrics. You can view any app for which you are a Space Developer.

PCF Metrics provides you with a graphical representation of application data for a given time frame, along with the corresponding application logs. See the sections below to Toggle the Data Views and Change the Time Frame. See the Interpret Metrics section for more information on each data view.

Toggle the Data Views

There are four data views: Container Metrics, Network Metrics, Logs, and Events. Select which views you want to see using the toggles in the
upper left.

Change the Time Frame

The data views show time along the horizontal axis. You can change the time frame for all the data views by using the dropdown at the top of the page. Use the refresh button to update all views with the most current data.

Zoom: From within any data view, you can also zoom in on areas of interest by clicking and dragging within the graph. This adjusts all of the views, including Logs, to show data from that time period.

Drag: From underneath the x-axis of any data view, you can drag left or right to view data for an earlier or later time.

Interpret Metrics

PCF Metrics displays the following data. You can hover over each view to see data for a specific time.

Container Metrics

The Container Metrics view displays CPU, Memory, and Disk usage:
• A spike in **CPU** might point to a process that is computationally heavy. Scaling app instances can relieve the immediate pressure, but investigate the app to better understand and fix the root cause.

• A spike in **Memory** might mean a resource leak in the code. Scaling app memory can also relieve the immediate pressure, but look for and resolve the underlying issue so that it does not occur again.

• A spike in **Disk** might mean the app is writing logs to files instead of STDOUT, caching data to local disk, or serializing huge sessions to disk.

Network Metrics

The **Network Metric** view displays **HTTP Requests & Errors** and **Latency**:

- A spike in **HTTP Requests** means more users are using your app. Scaling app instances can reduce the higher latency that may result.

- A spike in **HTTP Errors** means one or more 5xx errors have occurred. Check your app logs for more information.

- A spike in **Latency** means your users are waiting longer to use your app. Scaling app instances can spread that workload over more resources and result in faster response times.

Events

The **Events** view shows the following app events: **Create, Update, Start, Stop**, and **Crash**. You can change which events you see using the checkboxes in the upper right.

See the **About Starting Applications** and **Troubleshooting Application Deployment and Health** topics for more information about app events.

Logs

Logs displays application log data ingested from the **firehose**. See the **Application Logging in Cloud Foundry** topic for more information.
PCF Metrics lists all logs by default, and the histogram displays log frequency for the current time frame. You can refine the list and histogram with the following:

- **Filter**: Perform a keyword search. The histogram updates with blue bars based on the filter. Hover over a histogram bar to view the amount of logs for a specific time based on your filter.
- **Highlight**: Enter a term to highlight within your search. The histogram updates with yellow bars based on the results. Hover over a histogram bar to view the amount of logs for a specific time that contain the highlighted term.
- **Sources**: Choose which sources to display logs from.
- **Order**: Modify the order in which logs appear.

You can also click the **Download** button to download a file containing logs for the current search.
Troubleshooting PCF Metrics

This topic describes how to resolve common issues experienced while operating or using Pivotal Cloud Foundry (PCF) Metrics.

Errors during Deployment

The following sections describe errors that cause failure during a PCF Metrics tile and how to troubleshoot them.

Smoke Test Errors

PCF Metrics runs a set of smoke tests during installation to confirm system health. If the smoke tests discover any errors, you can find a summary of those errors at the end of the errand log output, including detailed logs about where the failure occurred.

The following tables describe common failures and how to resolve them.

Insufficient Resources

<table>
<thead>
<tr>
<th>Error</th>
<th>Insufficient Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>Your PCF deployment has insufficient Diego resources to handle the apps pushed as part of a PCF Metrics installation.</td>
</tr>
</tbody>
</table>
| Solution | Increase the number of Diego cells so that your PCF deployment can support the apps pushed as part of the PCF Metrics installation:
1. Navigate to the Resource Config section of the Elastic Runtime tile.
2. In the Diego Cell row, add another Instance. |

<table>
<thead>
<tr>
<th>App</th>
<th>Memory</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>metrics-ingestor</td>
<td>512MB</td>
<td>1GB</td>
</tr>
<tr>
<td>mysql-logqueue</td>
<td>1GB</td>
<td>1GB</td>
</tr>
<tr>
<td>elasticsearch-logqueue</td>
<td>512MB</td>
<td>1GB</td>
</tr>
<tr>
<td>metrics-aggregator</td>
<td>256MB</td>
<td>1GB</td>
</tr>
<tr>
<td>metrics</td>
<td>1GB</td>
<td>1GB</td>
</tr>
<tr>
<td>worker-app-dev</td>
<td>1GB</td>
<td>1GB</td>
</tr>
<tr>
<td>worker-app-logs</td>
<td>1GB</td>
<td>1GB</td>
</tr>
<tr>
<td>worker-health-check</td>
<td>1GB</td>
<td>1GB</td>
</tr>
<tr>
<td>worker-reaper</td>
<td>1GB</td>
<td>1GB</td>
</tr>
</tbody>
</table>

You may have more than one instance of each of the Ingestor and Loqueue apps depending your sizing needs. You configure these instance counts as part of the Data Store pane of the tile.

Nginx Load Balancer

<table>
<thead>
<tr>
<th>Error</th>
<th>The Smoke tests for Metrics UI errand failed. Or, the Smoke tests for Metrics UI checkbox is not selected and installation was successful, but the UI keeps loading and the graphs do not populate with data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>The Nginx proxy_buffering property is on and causes Nginx to block SSE traffic.</td>
</tr>
<tr>
<td>Solution</td>
<td></td>
</tr>
</tbody>
</table>
1. From the cf CLI, target the system org and metrics-v1-2 space of your PCF deployment:

```bash
$ cf target -o system -s metrics-v1-2
```
Solution

2. Confirm that **Smoke tests for Metrics UI** errand was not run during installation by listing recent logs from the `worker-app-logs` and `worker-app-dev` apps:

```
$ cf logs --recent worker-app-logs
$ cf logs --recent worker-app-dev
```

If neither log contains the text `jobStarted`, then the jobs are not queued because Nginx is blocking SEEs.

3. Turn off the Nginx `proxy_buffering` property.

Failed Querying MySQL

<table>
<thead>
<tr>
<th>Error</th>
<th>Failed querying mysql</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>The tile deployed without the necessary errands selected to keep the internal database schema in sync with apps.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-deploy the tile with the following errands selected:</td>
</tr>
<tr>
<td>- Database migrations for PCF Metrics</td>
</tr>
<tr>
<td>- Push PCF Metrics Data components</td>
</tr>
<tr>
<td>- Push PCF Metrics UI component</td>
</tr>
</tbody>
</table>

Received No Results Back from MySQL - Failing

<table>
<thead>
<tr>
<th>Error</th>
<th>Received no results back from mysql - failing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>The Ingestor is not functioning properly.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. From the cf CLI, target the <code>system</code> org and <code>metrics-v1-2</code> space of your PCF deployment:</td>
</tr>
</tbody>
</table>

```
$ cf target -o system -s metrics-v1-2
```

2. Run `cf apps` to see if these apps are running:

```
    metrics-ingestor
    mysql-loggerqueue
```

3. If the apps are not running, run the following commands to start them:

```
$ cf start metrics-ingestor
$ cf start mysql-loggerqueue
```

4. Run the following commands and search the app logs for `ERROR` messages containing additional information:

```
$ cf logs metrics-ingestor --recent
$ cf logs mysql-loggerqueue --recent
```

*Note: In some cases, the apps cannot communicate due to TLS certificate verification failure. If your deployment uses self-signed certs, ensure the **Disable SSL certificate verification for this environment** box is checked in the Elastic Runtime **Networking** pane.*

Failed to Connect to MySQL

<table>
<thead>
<tr>
<th>Error</th>
<th>Failed to connect to mysql</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>MySQL is not running properly.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Check the logs of the MySQL Server and MySQL Proxy jobs for errors.</td>
</tr>
</tbody>
</table>

 * You can download the logs from the PCF Metrics tile under the **Status** tab.
Solution

2. From the cf CLI, target the `system` org and `metrics-v1-2` space of your PCF deployment:
   ```bash
   $ cf target -o system -s metrics-v1-2
   ```

3. Run the following command and ensure the security group can access the MySQL jobs:
   ```bash
   $ cf security-group metrics-api
   ```

Failed to start elasticsearch client

<table>
<thead>
<tr>
<th>Error</th>
<th>Failed to start elasticsearch client</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>Elasticsearch is not running correctly.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Check the logs of the Elasticsearch Master, ElasticSearch Coordinator, and ElasticSearch Data jobs for errors. You can download the logs from the PCF Metrics tile under the Status tab.</td>
</tr>
<tr>
<td>2. From the cf CLI, target the <code>system</code> org and <code>metrics-v1-2</code> space of your PCF deployment:</td>
</tr>
</tbody>
</table>
   ```bash
   $ cf target -o system -s metrics-v1-2
   ```
| 3. Run the following command and ensure the security group can access the Elasticsearch jobs: |
   ```bash
   $ cf security-group metrics-api
   ```

Never Received App Logs

<table>
<thead>
<tr>
<th>Error</th>
<th>Never received app logs – something in the firehose -> elasticsearch flow is broken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>Ingestor is not inserting logs correctly.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. From the cf CLI, target the <code>system</code> org and <code>metrics-v1-2</code> space of your PCF deployment:</td>
</tr>
</tbody>
</table>
   ```bash
   $ cf target -o system -s metrics-v1-2
   ```
| 2. Run `cf apps` to see if these apps are running: |
   ```bash
   $ cf apps
   ```
   ```bash
   metrics-ingestor
   elasticsearch-logqueue
   ```
| 3. If the apps are not running, run the following commands to start them: |
   ```bash
   $ cf start metrics-ingestor
   $ cf start elasticsearch-logqueue
   ```
| 4. Run the following commands and search the app logs for **ERROR** messages containing additional information: |
   ```bash
   $ cf logs metrics-ingestor --recent
   $ cf logs elasticsearch-logqueue --recent
   ```

Note: In some cases, you may discover a failure to communicate with Loggregator in the form of a bad handshake error.
Ensure the **Loggregator Port** setting in the Elastic Runtime tile **Networking** pane is set to the correct value. For AWS, it is 443. For all other IaaSes, it is 443.

Metrics and Events Not Available

| Error | Network metrics are not available.
Container metrics are not available.
App events are not available. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>PCF Metrics is misconfigured and the frontend API does not receive logs from MySQL.</td>
</tr>
</tbody>
</table>
| Solution | 1. From the cf CLI, target the `system org` and `metrics-v1-2` space of your PCF deployment:
```
$ cf target -a system -s system-v1-2
```
2. Run the following command to check the app logs and investigate the error:
```
$ cf logs metrics --recent
```

Logs and Histograms Not Available

| Error | Logs are not available.
Histograms are not available. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>PCF Metrics is misconfigured and the frontend API does not receive logs from Elasticsearch.</td>
</tr>
</tbody>
</table>
| Solution | 1. From the cf CLI, target the `system org` and `metrics-v1-2` space of your PCF deployment:
```
$ cf target -a system -s system-v1-2
```
2. Run the following command to check the app logs and investigate the error:
```
$ cf logs metrics --recent
```

Elasticsearch Instance does not Start

<table>
<thead>
<tr>
<th>Error</th>
<th>The Deployment fails because an Elasticsearch instance does not start.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>The instance might not start because its configured heap size is greater than that of the VM that hosts it.</td>
</tr>
</tbody>
</table>
| Solution | 1. From the PCF Metrics tile in Ops Manager, select the **Data Store** settings pane.
2. Record the value in the **Elastic Search Heap Size** field.
3. Select the **Resource Config** pane and ensure the following jobs have RAM greater than or equal to the **Elastic Search Heap Size**
 - Elasticsearch Master
 - Elasticsearch Coordinator
 - Elasticsearch Data
4. If any of the jobs do not have enough memory, do one of the following:
 - Give the job more RAM
 - Lower the **Elastic Search Heap Size** |
No Logs or Metrics in the UI

In some cases, the PCF Metrics UI might not display metrics and logs after successfully deploying.

Follow the steps in this section to help locate the app or component causing the problem.

Step 1: Check your Load Balancer Configuration

If you use a load balancer, the event-stream mechanism used by the Metrics UI might be blocked. Refer to the table below to resolve this error.

If you do not use a load balancer, or this issue does not apply to your deployment, proceed to Step 2: Check the PCF Metrics Apps.

<table>
<thead>
<tr>
<th>Error</th>
<th>In the case of a customer using an F5 load balancer, metrics and logs were not visible in the UI despite successful ingestion and no UI errors reported.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>The root of the issue was the traffic of type text/event-stream was blocked by the F5 load balancer.</td>
</tr>
<tr>
<td>Solution</td>
<td>When F5 was configured to allow event-stream traffic, the issue was resolved.</td>
</tr>
</tbody>
</table>

Step 2: Check the PCF Metrics Apps

1. From Ops Manager, click the Elastic Runtime Tile.
 a. Click the Credentials tab.
 b. Under the UAA job, next to Admin Credentials, click Link to Credential.
 c. Record the username and password for use in the next step.

2. Log in to the Cloud Foundry Command Line Interface (cf CLI) using the credentials from the previous step.

 $ cf login -a https://api.YOUR-SYSTEM-DOMAIN -u admin -p PASSWORD

3. When prompted, select the system org and the metrics-v1-2 space.

4. Ensure that the output displays the following apps, each in a started state:
 - metrics-ingestor
 - mysql-queue
 - elasticsearch-queue
 - metrics-aggregator
 - metrics
 - worker-app-dev
 - worker-app-logs
 - worker-health-check
 - worker-reaper

5. Check the logs of each app for errors using the following command:

 $ cf logs APP-NAME --recent

 If you do not see any output, or if you did not find any errors, proceed to Step 3: Check the Elasticsearch Cluster.

Step 3: Check the Elasticsearch Cluster

1. From Ops Manager, select the PCF Metrics tile.

2. Under the Status tab, record the IP of an Elasticsearch Master node.

3. Use bosh ssh to access the VM from the previous step. See the Advanced Troubleshooting with the BOSH CLI topic for instructions.

4. Run the following command to list all the Elasticsearch indices:

 $ elasticsearch -h [IP] -e _all
$ curl localhost:9200/_cat/indices?v | sort

```
green open app_logs_1477512000 8 1 125459066 0 59.4gb 29.8gb
green open app_logs_1477526400 8 1 129356671 0 59.1gb 29.5gb
green open app_logs_1478174400 8 1 125747170 0 41.9gb 30.9gb
... 
green open app_logs_147807200 8 1 128392686 0 63.2gb 31.6gb
green open app_logs_147821600 8 1 102065754 0 55.2gb 26.5gb
health status index  pri rep docs.count docs.deleted store.size pri.store.size
```

5. Examine the **status** column of the output.

a. If the status of any of the indices is not **green**, restart the Logqueue app:

```
$ cf restart elasticsearch-logqueue
```

b. Run the curl command periodically to see if the indices recover to a **green** status.

6. Run the curl command several more times and examine the most recent index to see if the number of stored documents periodically increases.

Note: The last row of the output corresponds to the most recent index. The sixth column displays the number of documents for the index.

a. If all indices show a **green** status, but the number of documents does not increase, there is likely a problem further up in ingestion. Proceed to **Step 4: Check the Elasticsearch Logqueue**.

Step 4: Check the Elasticsearch Logqueue

1. Run `cf apps` to see if the **elasticsearch-logqueue** app instances are **started**.

2. If any instance of the app is **stopped**, run the following command to increase logging:

```
$ cf set-env elasticsearch-logqueue LOG_LEVEL DEBUG
```

a. Run the following command to stream logs:

```
$ cf logs elasticsearch-logqueue
```

b. In a different terminal window, run the following command:

```
$ cf restage elasticsearch-logqueue
```

c. Watch the logs emitted by the **elasticsearch-logqueue** app for errors.

- A common error is that the app cannot connect to Elasticsearch because a user deleted the application security group (ASG) that PCF Metrics creates to allow the Logqueue app to connect to the Elasticsearch VMs. You can run `cf security-group metrics-api` to see if the ASG exists. If not, see the documentation on Creating Application Security Groups.

3. If the app is started and you do not find any errors, proceed to **Step 5: Check the Metrics Ingestor**.

Step 5: Check the Metrics Ingestor

1. Run `cf apps` to see if the **metrics-ingestor** app instances are **started**.

2. If any of the app instances are **stopped**, run the following command to increase logging:

```
$ cf set-env metrics-ingestor LOG_LEVEL DEBUG
```
a. Run the following command to stream logs:

```
$ of logs metrics-ingestor
```

b. In a different terminal window, run the following command:

```
$ of restart metrics-ingestor
```

c. Watch the logs emitted by the `metrics-ingestor` app for errors. Refer to the list below for common errors:

- **Cannot connect to the firehose** PCF Metrics creates a UAA user to authenticate the connection to the firehose. This user must have the `doppler.firehose` authority.
- **Cannot connect to the logqueue** There might be a problem with the UAA, or it could be throttling traffic.
- **WebSocket Disconnects** If you see WebSocket disconnects logs in the ingestor app, consider adding additional Ingestor instances. The Firehose may be dropping the Ingestor connection to avoid back pressure.

3. If the app is started and you do not find any errors, proceed to **Step 6: Check MySQL**.

Step 6: Check MySQL

1. From Ops Manager, select the PCF Metrics tile.

2. Under the **Status** tab, record the IP of a **MySQL Server** node.

3. Use `bash ssh` to access the VM from the previous step. See the [Advanced Troubleshooting with the BOSH CLI](#) topic for instructions.

4. Log in to mysql by running `mysql -u USERNAME -p PASSWORD`.

 Note: If you do not know the username and password, you can run `cf env mysql-logqueue` with the `system` org and the `metrics-v1-2` space targeted.

5. Verify that the database was bootstrapped correctly:

 a. Run `show databases` and check for a `metrics` database.

 i. If there is no `metrics` database, the `migrate_db` errand of the BOSH release might not have run or succeeded.

6. Run `use metrics` to select the `metrics` database:

   ```
   mysql> use metrics;
   ```

7. Run `show tables` and ensure you see the following tables:
8. Enter the following query several times to verify that the value returned does not decrease over time:

```
mysql> select count(*) from metrics.app_metric_rollup where timestamp > ((UNIX_TIMESTAMP() - 60) * POW(10, 3));
```

This command displays the rate at which metrics flow in over the last minute.

a. If the command returns 0 or a consistently decreasing value, the problem is likely further up in ingestion. Proceed to Step 7: Check the MySQL Logqueue.

Step 7: Check the MySQL Logqueue

1. Run `cf apps` to see if the `mysql-logqueue` app instances are started.

2. If any instance of the app is stopped, run the following command to increase logging:

```
$ cf set-env mysql-logqueue LOG_LEVEL DEBUG
```

a. Run the following command to stream logs:

```
$ cf logs mysql-logqueue
```

b. In a different terminal window, run the following command:

```
$ cf restage mysql-logqueue
```

c. Watch the logs emitted by the `mysql-logqueue` app for errors.

- A common error is that the app cannot connect to MySQL because a user deleted the application security group (ASG) that PCF Metrics creates to allow the Logqueue app to connect to the MySQL VMs. You can run `cf security-group metrics-api` to see if the ASG exists. If not, see the documentation on Creating Application Security Groups.

3. If the app is started and you do not find any errors, proceed to Step 8: Check the Metrics Aggregator.
Step 8: Check the Metrics Aggregator

1. Run `cf app` to see if the `metrics-aggregator` app instances are `started`.

2. If any instance of the app is `stopped`, run the following command to increase logging:

   ```bash
   $ cf set-env metrics-aggregator LOG_LEVEL DEBUG
   ```

 a. Run the following command to stream logs:

   ```bash
   $ cf logs metrics-aggregator
   ```

 b. In a different terminal window, run the following command:

   ```bash
   $ cf restage metrics-aggregator
   ```

 c. Watch the logs emitted by the `metrics-aggregator` app for errors.

 - A common error is that the app cannot connect to MySQL because a user deleted the application security group (ASG) that PCF Metrics creates to allow the aggregator app to connect to the MySQL VMs. You can run `cf security-group metrics-api` to see if the ASG exists. If not, see the documentation on [Creating Application Security Groups](#).

MySQL Node Failure

In some cases, a MySQL server node may fail to restart. The following two sections describe the known conditions that cause this failure as well as steps for diagnosing and resolving them. If neither of the causes listed apply, the final section provides instructions for re-deploying BOSH as a last resort to resolve the issue.

Cause 1: Monit Timed Out

Diagnose

Follow these steps to see if a `monit` time-out caused the MySQL node restart to fail:

1. Use `bosh ssh` to access the failing node, using the IP address in the Ops Manager Director tile `Status` tab. See the [Advanced Troubleshooting with the BOSH CLI](#) topic for instructions.

2. Run `monit summary` and check the status of the `mariadb_ctrl` job.

3. If the status of the `mariadb_ctrl` job is `Execution Failed`, open the following file: `/var/vcap/sys/log/mysql/mariadb_ctrl.combined.log`.

 a. If the last line of the log indicates that MySQL started without issue, such as in the example below, `monit` likely timed out while waiting for the job to report healthy. Follow the steps below to resolve the issue.

   ```log
   "type":"line","log_level":1,"data":[]
   ```

Resolve

Run the following commands to return the `mariadb_ctrl` job to a healthy state:

1. Run `monit unmonitor mariadb`.

2. Run `monit monitor mariadb`.

3. Run `monit summary` and confirm that the output lists `mariadb_ctrl` as `running`.

© Copyright Pivotal Software Inc, 2013-2019
Cause 2: Bin Logs Filled up the Disk

Diagnose
1. Use `bash` `ssh` to access the failing node. See the Advanced Troubleshooting with the BOSH CLI [topic](#) for instructions.

2. Open the following log file: `/var/vcap/sys/log/mysql/mysql.err.log`.

3. If you see log messages that indicate insufficient disk space, the persistent disk [of](#) is likely storing too many bin logs. Confirm insufficient disk space by doing the following:
 a. Run `df -h`
 i. Ensure that you see the `/var/vcap/store` folder is at or over 90% usage.
 b. Navigate to `/var/vcap/store/mysql` and run `ls -al`
 i. Ensure that you see many files named with the format `mysql-bin.#####`

In MySQL for PCF, the server node does not make use of these logs and you can remove all except the most recent bin log. Follow the steps below to resolve the issue.

Resolve
1. Log in to mysql by running `mysql -u USERNAME -p PASSWORD`

 Note: If you do not know the username and password, you can run `cf env mysql-logqueue` with the `system org and the metrics-v1-2 space` targeted.

2. Run `use metrics;`

3. Run the following command:
   ```
   mysql> PURGE BINARY LOGS BEFORE 'YYYY-MM-DD HH:MM:SS';
   ```

Re-deploy BOSH to Restart the Node

If troubleshooting based on the causes mentioned above did not resolve the issue with your failing MySQL node, you can follow the steps below to recover it. Pivotal recommends only using this procedure as a last resort if there are no other potential solutions available.

warning: This procedure is extremely costly in terms of time and network resources. The cluster takes a significant amount of time to put the data replicated to the rest of the cluster back into the rebuilt node. This procedure consumes considerable network bandwidth as potentially hundreds of gigabytes of data needs to transfer.

Stop the Ingestor App
1. From Ops Manager, click the Elastic Runtime Tile.
 a. Click the **Credentials** tab.
 b. Under the **UAA job**, next to **Admin Credentials**, click **Link to Credential**.
 c. Record the username and password for use in the next step.

2. Log in to the cf CLI using the credentials from the previous step.
   ```
   $ cf login -a https://api.YOUR-SYSTEM-DOMAIN -u admin -p PASSWORD
   ```

3. Target the **system org and metrics-v1-2** space of your PCF deployment:
   ```
   $ cf target -o system -s metrics-v1-2
   ```
4. Stop data flow into the Galera cluster:

$ of stop metrics-import

Edit Your Deployment Manifest

1. Follow the steps in the Log in to BOSH section of the Advanced Troubleshooting with the BOSH CLI topic to target and log in to your BOSH Director. The steps vary slightly depending on whether your PCF deployment uses internal authentication or an external user store.

2. Download the manifest of your PCF deployment:

$ bosh download manifest YOUR-PCF-DEPLOYMENT YOUR-PCF-MANIFEST.yml

Note: You must know the name of your PCF deployment to download the manifest. To retrieve it, run `bosh deployments` to list your deployments and locate the name of your PCF deployment.

3. Open the manifest and set the number of instances of the failed server node to 1.

4. Run `bosh deployment YOUR-PCF-MANIFEST.yml` to specify your edited manifest.

5. Run `bosh deploy` to deploy with your manifest.

6. Run `bosh disks --orphaned` to see the persistent disk or disks associated with the failed node.

 a. Record the CID of each persistent disk.
 b. Contact Pivotal Support to walk through re-attaching the orphaned disks to new VMs to preserve their data.

7. Open the manifest and set the number of instances of the failed server node to 1.

8. Run `bosh deploy` to deploy with your edited manifest.

9. Wait for BOSH to rebuild the node.

MySQL SST Disabled Error

If you see the message below on a failing node in /var/vcap/sys/log/mysqlmysqlerr.log, you can resolve the error by following the instructions in the Interruptor Logs section of the MySQL for PCF documentation.

```
WSREP_SST: [ERROR] sst disabled due to danger of data loss. Verify data and bootstrap the cluster (20160610 04:33:21.338)
WSREP_SST: [ERROR] sst disabled due to danger of data loss. Verify data and bootstrap the cluster (20160610 04:33:21.340)
WSREP_SST: [ERROR] sst disabled due to danger of data loss. Verify data and bootstrap the cluster (20160610 04:33:21.341)
```

Log Errors

<table>
<thead>
<tr>
<th>Error</th>
<th>The PCF Metrics UI does not show any new logs from Elasticsearch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>The tile deployed with the Push PCF Metrics Data Components errand deselected</td>
</tr>
</tbody>
</table>

Restart the Elasticsearch Logqueue using the cf CLI as follows:

1. Target the system org and metrics v1-2 space of your PCF deployment:

 $ cf target -o system -s metrics-v1-2

2. Run the following command to restart the Logqueue application:

 $ of restart elasticsearch-logqueue

Note: To avoid having to apply this fix in the future, select the checkbox to enable the Push PCF Metrics Data Components errand before your next tile update.
503 Errors

<table>
<thead>
<tr>
<th>Error</th>
<th>You encounter 503 errors when accessing the PCF Metrics UI in your browser.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>Your Elasticsearch nodes may have become unresponsive.</td>
</tr>
<tr>
<td>Solution</td>
<td>Check the Elasticsearch index health by following the procedure below, and consider adding additional Elasticsearch nodes.</td>
</tr>
</tbody>
</table>

1. Retrieve the IP address of your Elasticsearch master node by navigating to the Metrics tile in the Ops Manager Installation Dashboard, clicking the Status tab, and recording the IP address next to ElasticsearchMaster.

![ElasticSearchMaster](image)

2. SSH into the Ops Manager VM by following the instructions in [SSH into Ops Manager](#).

3. From the Ops Manager VM, use `curl` to target the IP address of your Elasticsearch master node. Follow the instructions in the [Cluster Health](#) topic of the Elasticsearch documentation.

Fail to fetch Apps

<table>
<thead>
<tr>
<th>Error</th>
<th>The metrics app fails to fetch apps for a user with the proper credentials.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>The client’s browser’s plugins/cookies inject extraneous content in requests to CAPI, causing CAPI to reject the request</td>
</tr>
<tr>
<td>Verifying the error</td>
<td>You can verify having this error by using either of the two methods:</td>
</tr>
</tbody>
</table>

- Examining the network requests to cloud controller in a browser, and see if there are any out of the ordinary content being sent with the request (/cc/apps)

 OR

- Use a browser’s incognito mode to see if the metrics app is able to fetch apps

<table>
<thead>
<tr>
<th>Solution</th>
<th>Clear browser cookies/plugins</th>
</tr>
</thead>
</table>
PCF Metrics Product Architecture

This topic describes the product architecture of Pivotal Cloud Foundry (PCF) Metrics.

Overview

The diagram below displays the components of PCF Metrics in bold, as well as the Cloud Foundry components that the PCF Metrics system interacts with.

PCF Metrics deploys several Cloud Foundry apps as part of the install process. These components are the bold rectangles in the diagram. The cylinders represent the data storage components of PCF Metrics.

See the following sections to understand the several processes that happen within the PCF Metrics system.

How Data Flows from the Firehose to the Datastores

This section describes how PCF Metrics fills its datastores. PCF Metrics uses two datastores:
• The MySQL component stores metric and event data from the apps running on your PCF deployment.
 • Examples of events are `start` and `stop`.
 • Examples of metrics are `container metrics` such as CPU and `network metrics` such as Requests.

• The Elasticsearch component stores logs from the apps running on your PCF deployment.

Components

The diagram below highlights the components involved in the process of getting metric and log data into the Elasticsearch and MySQL datastore.

Process

The following table describes how the components act during each stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The <code>metrics-ingestor</code> app does the following:</td>
</tr>
<tr>
<td></td>
<td>• Receives app logs from the Firehose and forwards them to both the <code>elasticsearch-logqueue</code> and <code>mysql-logqueue</code> apps</td>
</tr>
</tbody>
</table>
• Receives container metrics and network metrics (HTTPStartStop events) from the Firehose and forwards them to the `mysql-queue` app.

2 Each of the logqueues act independently, writing information to the datastores:

Elasticsearch logqueue

The `elasticsearch-logqueue` app buffers logs and writes them to the Elasticsearch datastore.

MySQL logqueue

The `mysql-logqueue` app buffers logs and writes each data type to MySQL as follows:

• **Container metrics**: Inserts messages into the `container_metric` table of MySQL
• **Network**: Inserts messages into the `http_start_stop` table of MySQL
• **App logs**: Parses log messages for an app event name and inserts the message into the `app_event` table of MySQL

3 The `metrics-aggregator` app, which runs according to an `AGGREGATE_FREQUENCY` property, does the following to aggregate the data stored in MySQL:

1. Retrieves container and network metrics from MySQL.
2. Aggregates the data for each app over the last four minutes, grouped by one minute intervals.
3. Inserts the aggregated data into the `app_metric_rollup` table of the MySQL component.

How the PCF Metrics UI Retrieves Data from the Datastores

This section describes the flow of data through the system when you interact with the PCF Metrics UI.

Components

The diagram below highlights the components involved in this process.
Process

The following table describes how the components act during each stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A user launches <code>manifest SYSTEM-DOMAIN</code> in a browser and enters her UAA credentials.</td>
</tr>
<tr>
<td>2</td>
<td>After the UAA authorizes the user, the browser does the following:</td>
</tr>
<tr>
<td></td>
<td>1. Retrieves through the Cloud Controller API a list of apps that the user can access</td>
</tr>
<tr>
<td></td>
<td>2. Displays a page in which the user can select any app returned by the Cloud Controller API</td>
</tr>
<tr>
<td>3</td>
<td>A user selects an app from the dropdown menu, which does the following:</td>
</tr>
<tr>
<td></td>
<td>1. Opens a Server-Sent Events (SSE) connection to the <code>metrics</code> app (metrics API)</td>
</tr>
<tr>
<td></td>
<td>2. Sends HTTP Put requests to the metrics API to retrieve metrics and logs for the specified time frame</td>
</tr>
<tr>
<td>4</td>
<td>The metrics API receives the requests from the browser and does the following:</td>
</tr>
</tbody>
</table>
1. Communicates with the UAA and Cloud Controller to confirm that the user can access data for the requested app

2. Creates jobs on Redis channels that describe the type of metric, log, or event requested, as well as the time period

Note: PCF Metrics uses Redis as a pub-sub mechanism between the metrics API and worker apps to marshal metrics and logs.

The `worker-app-dev` and `worker-app-logs` apps, which subscribe to the job channels on Redis, recognize the jobs created by the metrics API. The apps remove their corresponding jobs and do the following:

1. Retrieve data from the datastores:
 a. `worker-app-dev` queries MySQL to retrieve any metrics and events requested for the time period.
 b. `worker-app-logs` queries Elasticsearch to retrieve the logs for the time period requested.

2. Publish the data to Redis

Redis forwards the data to the metrics API.

The metrics API streams the data to the browser over SSE, and the PCF Metrics UI displays the data requested by the user.

How Worker Apps Monitor the System

The following table describes the two worker components that PCF Metrics uses to monitor other components in the system.

<table>
<thead>
<tr>
<th>Worker Component</th>
<th>Function</th>
</tr>
</thead>
</table>
| `worker-health-check` | The health-check worker is an app that does the following every minute:
 - Checks whether the apps deployed by PCF Metrics can reach the MySQL, Elasticsearch, and Redis datastores
 - Records the number of MySQL connections and Redis channels |
| `worker-reaper` | The reaper worker is an app that removes orphaned connections from the `worker-app-dev` and `worker-app-logs` apps to Redis.
PCF Metrics requires the reaper worker because Redis does not remove its connections to `worker-app-dev` and `worker-app-logs` if they restart. |
PCF Metrics Release Notes and Known Issues

v1.2.11
Release Date: July 12, 2017

Notes
The following list describes what’s new in PCF Metrics v1.2.11:

- **MySQL Upgrade**: PCF Metrics v1.2.11 now uses v32.9 of the MySQL release.

Known Issues
See the Known Issues section for the previous release.

v1.2.10
Release Date: June 6, 2017

Notes
The following list describes what’s new in PCF Metrics v1.2.10:

- **Stemcell Bump**: PCF Metrics v1.2.10 includes a major stemcell bump from 3263.x to 3363.x.

Known Issues
See the Known Issues section for the previous release.

v1.2.9
Release Date: April 14, 2017

Notes
The following list describes what’s new in PCF Metrics v1.2.9:

- **Internetless Installations**: PCF Metrics v1.2.9 removes multiple unnecessary dependencies that prevented the tile from being installed in an internetless environment.
- **Reduced MySQL Disk Usage**: Raw data in MySQL is now pruned after 2 days, greatly reducing the amount of disk space required to store metrics in MySQL.

Known Issues
See the Known Issues section for the previous release.
v1.2.8
Release Date: April 7, 2017

Note: You may run into smoke test failures when installing this tile. Consider upgrading to our newest patch, v1.2.9, which is more stable.

Notes
The following list describes what's new in PCF Metrics v1.2.8:

- **Elasticsearch Resource Reduction**: PCF Metrics v1.2.8 reduces VMs used by removing the Elasticsearch Coordinator job and allowing configuration of Elasticsearch Master node count.
- **Simplified Tile Configuration**: Removed redundant Elasticsearch Heap Size property from OpsMan tile config.
- **Internetless Installations**: Removed multiple unnecessary dependencies that prevented the tile from being installed in an internetless environment.
- **Reduced MySQL Disk Usage**: Raw data in MySQL is now pruned after 2 days, greatly reducing the amount of disk space required to store metrics in MySQL.

Known Issues
See the Known Issues section for the previous release.

v1.2.7
Release Date: Feb 09 2017

Notes
- Metrics works in PCF environment with certificates signed by custom CA

Known Issues
See the Known Issues section for the previous release.

v1.2.6
Release Date: January 27 2017

Notes
- Includes a cli patch that resolves tile install failure due to resource matching timeouts
- Enabled the rejoin-unsafe errand for MySQL

Known Issues
See the Known Issues section for the previous release.
v1.2.5
Release Date: January 13 2017

Notes
- Addresses conflict between mysql and metrics which caused mysql monitoring to fail intermittently
- Upgraded to new mysql release which stabilizes metrics tile upgrades

Known Issues
See the Known issues section for the previous release.

v1.2.4
Release Date: January 10 2017

Notes
- Addresses a redis alpha version dependency bug

Known Issues
See the Known issues section for the previous release.

v1.2.3
Release Date: December 16 2016

Notes
- Enables installs for internetless environments
- Optimize MySQL disk usage by reducing bin log retention
- Added MySQL and ES configuration changes to improve the stability of cluster during restarts
- Fixed an integration issue with Apps manager that restores link to metrics

Known Issues
See the Known issues section for the previous release.

v1.2.1
Release Date: November 29 2016

Notes
The following sections describe what's new in PCF Metrics v1.2.1.
New Requirements and Configurations

PCF Metrics v1.2.1 requires the Redis tile v1.6 or later.

Consider the following updates when configuring and deploying PCF Metrics v1.2.1:

- **MySQL Alerts**: You can now specify an email address that receives alerts from PCF Metrics about MySQL storage issues. See the [MySQL Alerts](#) section of the Installing PCF Metrics topic for more information.
- **Data Store**: You can now configure additional properties in the Data Store pane. See the [Data Store](#) section of the Installing PCF Metrics topic for more information.
- **Errands**: The tile includes new errands. See the [Errands](#) section of the Installing PCF Metrics topic for more information.
 - The new Smoke Test tile errand summarizes any errors that occur during the test, linking directly to new troubleshooting documentation.
- **Resource Config**: See the [Increased Data Persistence](#) section below to learn about updates affecting this configuration pane.
- **Stemcell**: This release uses stemcell v3263.

Increased Data Persistence

PCF Metrics v1.2.1 increases the retention period for log, metric, and event data to two weeks. To support this increase, PCF Metrics v1.2.1 includes the following component updates:

- **Log datastore**: The default size of the Elasticsearch cluster is now nine VMs instead of three.
- **Metrics datastore**: The tile stores metrics data in MySQL instead of IMDS and increases the default number of metrics storage VMs to seven instead of five to support higher capacity and introduce high availability.
- **All VMs**: The default persistent disk usage is ten times greater than in v1.1.x.

See the [Sizing PCF Metrics for Your System](#) topic for updated guidance and the [PCF Metrics Product Architecture](#) topic for an updated explanation of the components.

Improved UI

PCF Metrics v1.2.1 improves the user experience by removing the Dashboard screen and replacing it with an enhanced Explore screen. The following list describes how PCF Metrics v1.2.1 further refines its UI. To view the UI and understand the new functionality, see the [Using PCF Metrics](#) topic.

- **Viewing historical data**: You can now view data for the past two weeks.
- **Monitoring app events**: The new Events view displays all start, stop, crash, and update events.
- **Searching Logs**: The Logs view now includes a histogram that displays log frequency for the current time frame. The histogram updates based on your search results. You can also download your logs.
- **Setting the time frame**: PCF Metrics v1.2.1 improves time frame selection.

Known Issues

The following sections describe the known issues in PCF Metrics v1.2.1.

Compatibility with Elastic Runtime

PCF Metrics v1.2.x requires Elastic Runtime v1.8.9 or later.

Data Loss when Upgrading from v1.1 to v1.2

The upgrade process from v1.1 to v1.2 acts in the following sequence:

1. Removes the data storage components of v1.1
2. Deploys v1.2 data storage and ingestion components
The upgrade process does not save any v1.1 data and the new components do not begin ingesting and storing log or metrics data until they successfully deploy.

Data Loss during Stemcell Upgrades
The Elasticsearch cluster updates when PCF Metrics applies a new stemcell, which causes decreased log ingestion and, consequently, the loss of logs. Some storage occurs during this time because canary deployed nodes can intakesome of the load from firehose. Ingestion reduction may vary depending on deployment size, but you can expect some loss.

In testing, the Elasticsearch cluster took approximately five minutes to update and experienced between a 40% and 60% reduction in logs ingested and stored.

Smoke Test Failure
The PCF Metrics Smoke Test errand may fail if your deployment authenticates user sign-ons with an external SAML identity provider or an external LDAP server. In some cases, these external user stores have an additional login procedure that prevents the errand from authenticating with the deployment and validating against the Metrics API.

If you experience this issue, disable the Smoke Test errand in the PCF Metrics tile and click Apply Changes to run the install again.

See the Configure Authentication and Enterprise SSO of section of the Configuring Elastic Runtime topic for more information on what configurations can lead to this failure.

For Operators who Deploy PCF Metrics using BOSH
If both of the following are true, you may experience issues while using PCF Metrics:

- You deploy PCF Metrics using BOSH instead of using the PCF Metrics tile in Ops Manager.
- You use self-signed certificates.

Pivotal recommends using certificates issued by a Certificate Authority for BOSH deployments of this product.

Past Minor v1.1.x
Release Notes for v1.1.x releases can be found here

Past Minor v1.0.x
Release Notes for v1.0.x releases can be found here